Whatever Does Not Kill Deep Reinforcement Learning, Makes It Stronger
نویسندگان
چکیده
Recent developments have established the vulnerability of deep Reinforcement Learning (RL) to policy manipulation attacks via adversarial perturbations. In this paper, we investigate the robustness and resilience of deep RL to training-time and test-time attacks. Through experimental results, we demonstrate that under noncontiguous trainingtime attacks, Deep Q-Network (DQN) agents can recover and adapt to the adversarial conditions by reactively adjusting the policy. Our results also show that policies learned under adversarial perturbations are more robust to test-time attacks. Furthermore, we compare the performance of ǫ-greedy and parameter-space noise exploration methods in terms of robustness and resilience against adversarial perturbations.
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملSimulating the Effect of Reinforcement Learning on Neuronal Synchrony and Periodicity in the Striatum
The study of rhythms and oscillations in the brain is gaining attention. While it is unclear exactly what the role of oscillation, synchrony, and rhythm is, it appears increasingly likely that synchrony is related to normal and abnormal brain states and possibly cognition. In this article, we explore the relationship between basal ganglia (BG) synchrony and reinforcement learning. We simulate a...
متن کاملMulti-task learning with deep model based reinforcement learning
In recent years, model-free methods that use deep learning have achieved great success in many different reinforcement learning environments. Most successful approaches focus on solving a single task, while multi-task reinforcement learning remains an open problem. In this paper, we present a model based approach to deep reinforcement learning which we use to solve different tasks simultaneousl...
متن کاملLearning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening
We propose a novel training algorithm for reinforcement learning which combines the strength of deep Q-learning with a constrained optimization approach to tighten optimality and encourage faster reward propagation. Our novel technique makes deep reinforcement learning more practical by drastically reducing the training time. We evaluate the performance of our approach on the 49 games of the ch...
متن کاملDeep Reinforcement Learning for Vision-Based Robotic Grasping: A Simulated Comparative Evaluation of Off-Policy Methods
In this paper, we explore deep reinforcement learning algorithms for vision-based robotic grasping. Modelfree deep reinforcement learning (RL) has been successfully applied to a range of challenging environments, but the proliferation of algorithms makes it difficult to discern which particular approach would be best suited for a rich, diverse task like grasping. To answer this question, we pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.09344 شماره
صفحات -
تاریخ انتشار 2017